Implementation of data-dependent isotopologue fragmentation in 13C-based metabolic flux analysis
نویسندگان
چکیده
A novel analytical approach based on liquid chromatography coupled to quadrupole time of flight mass spectrometry, employing data-dependent triggering for analysis of isotopologue and tandem mass isotopomer fractions of metabolites of the primary carbon metabolism was developed. The implemented QTOFMS method employs automated MS/MS triggering of higher abundant, biologically relevant isotopologues for generating positional information of the respective metabolite. Using this advanced isotopologue selective fragmentation approach enables the generation of significant tandem mass isotopomer data within a short cycle time without compromising sensitivity. Due to a lack of suitable reference material certified for isotopologue ratios, a Pichia pastoris cell extract with a defined 13C distribution as well as a cell extract from a 13C-based metabolic flux experiment were employed for proof of concept. Moreover, a method inter-comparison with an already established GC-CI-(Q)TOFMS approach was conducted. Both methods showed good agreement on isotopologue and tandem mass isotopomer distributions for the two different cell extracts. Graphical abstract Schematic overview of data-dependent isotopologue fragmentation for acquisition of isotopologue and tandem mass isotopomer fractions.
منابع مشابه
13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA.
The carbon metabolism of Listeria monocytogenes (Lm) EGD and the two isogenic mutant strains LmDeltaprfA and LmDeltaprfApPRFA* (showing no or enhanced expression, respectively, of the virulence factor PrfA) was determined by 13C isotopologue perturbation. After growth of the bacteria in a defined medium containing a mixture of [U-13C6]glucose and glucose with natural 13C abundance (1:25, wt/wt)...
متن کامل13C metabolic flux ratio analysis by direct measurement of free metabolic intermediates in L. mexicana using gas chromatography-mass spectrometry
Until recently, 13 C-based flux analyses have almost exclusively relied on analysis of labelled amino acids in proteins. This approach is not directly applicable to Leishmania, as these parasites scavenge most of their amino acids from the media. Leishmania are also unusual in that they i) share little genomic similarity with other organisms ii) constitutively express their metabolic genes and ...
متن کاملReliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids
13C metabolic flux analysis (MFA) is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs) is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular meta...
متن کاملA Method to Constrain Genome-Scale Models with 13C Labeling Data
Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide st...
متن کاملOpenFLUX: efficient modelling software for 13C-based metabolic flux analysis
BACKGROUND The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 409 شماره
صفحات -
تاریخ انتشار 2017